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Abstract

In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or
inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the
resulting angular momentum and parity distribution in the compound nucleus. A model for determining
these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The fo-
cus is on obtaining a first, simple description of the direct-reaction process that produces the compound
nucleus and on providing the basis for a more complete treatment of the problem. The approxima-
tions employed in the present description are discussed and the extensions required for a more rigorous
treatment of the problem are outlined. To illustrate the formalism, an application to 90Zr(α, α′)90Zr∗ is
presented.
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1 Introduction

The Surrogate nuclear reactions approach, an indirect method for determining cross sections of compound-
nuclear reactions that was originally introduced in the 1970s [22, 17], has recently received renewed atten-
tion [78, 79, 80, 62, 9, 63, 36, 30, 34, 29, 21, 41, 15, 60, 19, 38, 8, 33, 42, 31, 37]. Both the early and the
more recent applications of the method have focused on cross section estimates for neutron-induced fission
for actinide targets, although a few experiments have been designed to obtain (n,γ) cross sections for some
rare earth and actinide nuclei. As applications to new areas of interest (various types of compound-nucleus
reactions, lower energies, new regions of the isotopic chart) are being explored, a more comprehensive treat-
ment of the Surrogate approach becomes necessary in order to examine previously used approximations, to
validate the Surrogate approach, and to determine its limitations. In particular, a more realistic theoretical
description of the Surrogate mechanism is required.

In the Surrogate approach the compound nucleus (B∗) occurring in the reaction of interest (a+A → B∗ →
c + C) is produced via an alternative, “Surrogate” reaction (d + D → B∗ + b) and the measured compound-
nucleus decay probabilities are combined with the calculated formation cross section for the compound
nucleus in the desired reaction to yield the relevant reaction cross section. This approach is particularly
valuable when the target of interest, A, is short-lived and a suitable Surrogate reaction involving a stable
target D and a stable projectile d can be identified.

The most significant limitation of the method at this time is the fact that the compound-nuclear spin-
parity distributions in the desired and Surrogate reactions differ from each other in a manner that is poorly
understood (see “spin-parity population mismatch” in Section 1.1). While optical-model calculations provide
fairly reliable spin-parity information for the desired reaction, no tools are currently available for formulating
accurate predictions of the spin-parity distributions for compound nuclei produced in Surrogate reactions.
This situation does not merely reflect an absence of useful reaction codes, but points to an incomplete picture
of the reaction mechanisms that produce the compound nucleus in a Surrogate reaction. A significantly
improved (qualitative and quantitative) understanding of the underlying processes is required. This includes
a description of direct reactions that populate highly-excited, unbound states, the damping of these doorway
states into more complicated configurations that lead to a compound nucleus (or non-equilibrium particle
emission), the dependence and influence of these processes on angular momentum, parity, and energy, and
possible width fluctuation corrections to the standard Hauser-Feshbach-type formalism.

First steps towards predicting the spin-parity population of a compound nucleus produced in a direct
reaction were taken by Andersen et al. [1], Back et al. [5], and, more recently, by Younes and Britt [78, 79].
These authors employed simple transfer calculations to estimate compound-nucleus spin-parity distribution
following various stripping reactions on actinide targets. Younes and Britt used the resulting spin-parity
distributions to re-analyze Surrogate (t,pf), (3He,df), and (3He,tf) fission-correlation measurements from the
1970s [22, 17] in order to extract (n,f) cross sections. Compared to earlier Surrogate analyses of the data,
their estimated (n,f) cross sections showed significantly improved agreement with evaluated results, where
available. Their findings underscore the importance of accounting for the spin-parity mismatch between the
desired and Surrogate reactions and highlight the need for further development of theories that describe the
processes involved in forming a compound nucleus via a direct reaction.

In the present report a model is developed to predict the spin-parity distribution in a compound nucleus
produced via inelastic α scattering. The focus here is on obtaining a first, simple description of the direct-
reaction process and on providing the basis for a more complete treatment of the problem. For this reason, we
outline what a more rigorous treatment of the mechanisms that produce a compound nucleus entails, clearly
specify the approximations made in the present description, and provide details about the model and model
inputs employed. We discuss an application for inelastic α scattering off the doubly-closed shell nucleus 90Zr,
for which much experimental data is available, and provide a first estimate for the compound-nucleus spin-
parity distributions produced via inelastic scattering. The resulting cross sections also serve as a baseline
against which future inelastic scattering calculations, carried out in a more comprehensive framework (e.g.
in the context of the SciDAC-II project “Building a Universal Nuclear Energy Density Functional” [11, 13])
can be compared.

In the remainder of this introduction the Surrogate formalism and the notion of the spin-parity (Jπ)
population mismatch are explained, and a brief description of the challenges involved in a comprehensive
treatment of the problem is given. In Section 2, a model is introduced for the prediction of the Jπ population
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resulting from inelastic alpha scattering off a spherical target. The model employed here is based on a particle-
hole description of the excited intermediate nucleus. The application of the model requires determining
single-particle orbitals, single-particle damping widths, and the interaction between the projectile and the
target. These issues are discussed in Sections 3 (single-particle orbitals), 4 (damping widths), and 5 (α
-target interaction), respectively. Cross sections for producing individual particle-hole excitations are shown
in Section 6, and the final inelastic scattering cross section and the associated Jπ distributions are given
in Section 7 for 140 MeV α particles scattering from a 90Zr target. A summary and recommendations for
future work are given in Section 8.

1.1 The Surrogate formalism and the spin-parity population mismatch

The Surrogate nuclear reaction technique combines experiment with theory to obtain cross sections for
compound-nuclear reactions, a + A → B∗ → c + C, involving difficult-to-produce targets, A. In the Hauser-
Feshbach formalism [47], the cross section for this desired reaction takes the form:

σαχ(Ea) =
∑
J,π

σCN
α (Eex, J, π) GCN

χ (Eex, J, π) , (1)

with α and χ denoting the relevant entrance and exit channels, a + A and c + C, respectively [47]. The
excitation energy Eex of the compound nucleus, B∗, is related to the center-of-mass energy Ea in the entrance
channel via the energy needed for separating a from B: Ea = E−Sa(B). In many cases the formation cross
section σCN

α = σ(a + A → B∗) can be calculated to a reasonable accuracy by using optical potentials, while
the theoretical decay probabilities GCN

χ for the different decay channels χ are often quite uncertain. The
latter are difficult to calculate accurately since they require knowledge of optical models, level densities,
and strength functions for the various possible exit channels. The objective of the Surrogate method is to
determine or constrain these decay probabilities experimentally.

Figure 1: Schematic representation of the desired (left) and Surrogate (right) reaction mechanisms. The
basic idea of the Surrogate approach is to replace the first step of the desired reaction, a+A, by an alternative
(Surrogate) reaction, d + D → b + B∗, that populates the same compound nucleus. The subsequent decay
of the compound nucleus into the relevant channel, c + C, can then be measured and used to extract the
desired cross section.

In the Surrogate approach, the compound nucleus B∗ is produced by means of an alternative (Surrogate),
direct reaction, d + D → b + B∗, and the desired decay channel χ(B∗ → c + C) is observed in coincidence
with the outgoing particle b (see Figure 1). The coincidence measurement provides

Pδχ(Eex) =
∑
J,π

FCN
δ (Eex, J, π) GCN

χ (Eex, J, π) , (2)

the probability that the compound nucleus was formed in the Surrogate reaction with spin-parity distribution
FCN

δ (Eex, J, π) and subsequently decayed into the channel χ. The distribution FCN
δ (Eex, J, π), which may be

very different from the compound-nuclear spin-parity populations following the absorption of the projectile
a in the desired reaction, has to be determined theoretically, so that the branching ratios GCN

χ (Eex, J, π) can
be extracted from the measurements. In practice, the decay of the compound nucleus is modeled and the
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GCN
χ (Eex, J, π) are obtained by adjusting parameters in the model to reproduce the measured probabilities

Pδχ(Eex) [78, 79]. Subsequently, the sought-after cross section can be obtained by combining the calculated
cross section σCN

α (Eex, J, π) for the formation of B∗ (from a + A) with the extracted decay probabilities
GCN

χ (Eex, J, π) for this state, see Eq. 1.
The formalism outlined above does not include correlations between the incident and outgoing reaction

channels, which in principle affect both the desired and Surrogate reactions. For the desired reaction,
these correlations can be taken into account formally by including width fluctuation corrections [45], while
their influence on the coincidence probability determined in a Surrogate experiment, Eq. 2, remains to be
quantified.

The single most important challenge associated with the Surrogate approach is the fact that the Surrogate
reaction populates the states in the intermediate nucleus differently than the desired channel, i.e. the weights
FCN

δ (Eex, J, π) by which the decay probabilities GCN
χ (Eex, J, π) are multiplied in Eq. 2 are different from

the relative formation cross sections fCN
α (Eex, J, π) = σCN

α (Eex, J, π)/
∑

J′π′ σCN
α (Eex, J ′, π′) of Eq. 1, and

depend on the direct reaction under consideration. This diffference is often referred to as the spin-parity
population mismatch. Almost all applications of the Surrogate method so far have neglected the effects
of the spin-parity mismatch and have analyzed the data under the assumption that the Weisskopf-Ewing
approximation is valid [22, 17, 62, 15, 9, 63, 60, 19, 8].

In the Weisskopf-Ewing approximation [45, 24] to the full Hauser-Feshbach formalism, the compound-
nuclear decay probabilities are treated as independent of J and π, and the cross section for the desired
reaction takes the simple product form:

σWE
αχ (Ea) = σCN

α (Eex) GCN
χ (Eex) , (3)

where σCN
α (Eex) =

∑
J,π σCN

α (Eex, J, π) is the reaction cross section describing the formation of the com-
pound nucleus in the desired reaction and GCN

χ (Eex) denotes the Jπ-independent decay probability for the
exit channel χ. In the context of Surrogate reactions, this approximation greatly simplifies the application
of the method: It becomes straightforward to obtain the Jπ-independent branching ratios GCN

χ (Eex) from
measurements of Pδχ(Eex) [= GCN

χ (Eex) since
∑

J,π FCN
δ (Eex, J, π) = 1] and to calculate the desired reac-

tion cross section. Calculating the direct-reaction probabilities FCN
δ (Eex, J, π) and modeling the decay of

the compound nucleus are no longer required.
The recently introduced Surrogate Ratio approach [63, 60, 19, 8] is an approximation that makes use of

the Surrogate idea and requires the (approximate) validity of the Weisskopf-Ewing limit. In this approach,
the ratio R(E) = σα1χ1/σα2χ2 of the cross sections of two compound-nuclear reactions is measured, using
two Surrogate experiments. An independent determination of the cross section σα1χ1 can then be used to
deduce σα2χ2 . An advantage of using the Ratio method is the fact that it eliminates the need to accurately
measure the total number of Surrogate reaction events. Furthermore, there are indications that small to
moderate deviations from the Weisskopf-Ewing assumption might cancel in this approach [38, 36].

Both the Weisskopf-Ewing approximation and the related Surrogate Ratio approach have provided useful
cross section information [22, 17, 62, 15, 9, 63, 60, 19, 8], in particular for (n, f) cross sections for actinide
nuclei. However, at low incident energies (below about En = 1 MeV for neutron-induced fission) and for
reactions involving targets near closed shells, it is known that the Weisskopf-Ewing approximation is no
longer valid [78, 43, 57, 58, 39]. Furthermore, (n, γ) reactions are expected to be more sensitive to the
compound-nucleus spin-parity distribution than (n, f) reactions. Thus, a treatment that addresses the
spin-parity population mismatch issue is needed in order to investigate the validity of the Weisskopf-Ewing
and Ratio approximations, to apply the Surrogate approach to new areas of interest, and to determine its
limitations.

1.2 Addressing the challenge of the spin-parity mismatch

Predicting the spin-parity distribution for a compound nucleus produced in a Surrogate reaction requires a
careful consideration of the reaction mechanisms that are involved in the formation of the compound nucleus.
In the absence of width fluctuation corrections, the challenge of describing the relevant reaction mechanisms
can be divided into two separate problems:

1) the formation of a highly-excited nucleus in a direct reaction, and
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2) the damping of the excited states into the compound nucleus.

The above considerations do not include correlations between the incident and outgoing reaction channels,
which in principle affect both the desired and Surrogate reactions. For the desired reaction, these correlations
can be taken into account formally by including width fluctuation corrections [45], while a similar simple
solution is not readily available for the Hauser-Feshbach-type expression describing the Surrogate reaction,
Eq. 2. Therefore, a comprehensive theoretical treatment of the Surrogate method requires an assessment of
the importance of

3) width fluctuation correlations to the Surrogate reaction formalism and possibly an extension of the
formalism to account for these correlations.

Addressing the first problem necessitates developing a quantitative description of the direct-reaction pro-
cess that allows for a prediction of the spin-parity distribution in the highly-excited intermediate nucleus,
immediately following the direct reaction. Such a description is also nontrivial since it requires a framework
for calculating cross sections of different reactions (stripping, pick-up, charge exchange, and inelastic scat-
tering) to continuum states, for a variety of projectiles (p, d, t, α, etc.) and targets (spherical, deformed,
and transitional).

The second problem is associated with the subsequent evolution of the intermediate nucleus. The assump-
tion that a compound (i.e. equilibrated) nucleus is formed is central to the Surrogate method. Rapid decay
of the intermediate configuration before a compound nucleus can be formed would invalidate the Surrogate
analysis. The competition between particle emission and equilibration, and its dependence on the spin and
parity of the intermediate nucleus, needs to be investigated1.

Incorporating width fluctuation correlations will introduce additional complications. In the desired re-
action, they are known to enhance the elastic scattering cross section and reduce the inelastic and reaction
cross sections, although this depletion rarely exceeds 10-20% (even at energies below approximately 2 MeV)
and becomes negligible as the excitation energy of the compound nucleus increases [45]. An examination of
the role of width fluctuation correlations for Surrogate reactions is beyond the scope of the present work, but
should be part of a comprehensive investigation of the formalism associated with the Surrogate approach.

1This process should not be confused with pre-equilibrium emission of particles in the desired reaction, a + A → c + C;
contributions from the latter cannot be determined via the Surrogate approach and need to be calculated separately and added
to the desired cross section.
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2 The Model

The goal of the work presented here is the prediction of the angular-momentum and parity distribution in a
compound nucleus following a direct inelastic-scattering reaction with α particles from a spherical or near-
spherical target nucleus. A complete description of the process in which the compound nucleus is produced
is nontrivial, since it involves ingredients that have not been sufficiently explored to date (see Section 1.2).
To make a calculation of the Jπ distribution in the compound nucleus of interest feasible, we employ a series
of assumptions and simplifications. These will be described below. The result is a simple model that allows
a first prediction of the angular-momentum distribution in a spherical compound nucleus that was excited
by inelastic alpha scattering. Ideas for improving the model will be discussed in Section 8.

2.1 Producing a compound nucleus via inelastic scattering: Qualitative descrip-
tion

We consider one-step inelastic scattering in which a projectile b excites the target B from its ground state
to an intermediate state B∗ and restrict ourselves to nuclear interactions that are of two-body nature. This
process has been studied in much detail for bound final states, in particular for collective excitations. More
generally, it is possible to excite a collective mode or 1p-1h states, where the notation p (h) refers to a
single-nucleon, proton or neutron, particle (hole) state.

We now consider the case in which inelastic scattering produces a highly excited 1p-1h excitation |Ψ1p1h〉
in the A-body system. Eex is the energy that was transferred in the scattering process. If Eex is larger
than the particle separation energy, then the nucleus can emit a particle or produce a 2p-2h state |Ψ2p2h〉.
Subsequently, the system can evolve to 3p-3h, 4p-4h, etc. states. At each step it is possible that the system
emits a particle, although the probability for particle emission decreases with each further step since the
energy Eex is shared among more and more nucleons. If no particle is emitted in this chain, the process
produces a compound A-body system. Similar considerations apply to any excited configuration that can
be described as a superposition of 1p-1h states.

In principle, one would like to describe the evolution of the intermediate nucleus following the initial
excitation by inelastic scattering. Such a description is beyond the scope of the current study. In the
remainder of the document we will restrict our efforts to predicting the Jπ distribution of an intermediate
nucleus immediately following the (Surrogate) direct inelastic scattering process. The result can be used
as a first estimate for the spin-parity distribution present in the compound nucleus prior to decay. This is
equivalent to assuming that, to first order, the Jπ distribution is not affected by the equilibration process.
This assumption is likely to be violated and the uncertainty introduced by this simplification remains to be
studied.

Next, we will consider the excitation of a nucleus B from its ground state to an excited state B∗ with
fixed energy Eex via inelastic scattering. We are interested in energy regions with high level density and will
consider excitations energies Eex both lower and higher than the neutron and proton separation energies of
the nucleus. We will carry out calculations for a fixed excitation energy; it is straightforward to generalize
from this case to a situation in which a finite energy interval is populated, as is the case in a Surrogate
reaction.

2.2 DWBA description for inelastic alpha scattering

We describe the scattering process as a one-step process and employ the DWBA formalism [67, 46]. The
scattering cross section is proportional to the square of the matrix element

M =
∫

d~rα d~r χ−∗(kf , ~rα)Ψ(A)∗
f (~r)V (~r0, ~r)Ψ

(A)
i (~r)χ+(ki, ~rα) , (4)

where Ψ(A)
k (~r) = Ψ(A)

k (~r1, . . . , ~rA) denotes the A-body wave function for the initial (k = i) and final (k = f)
states of the target, and χ+(ki, ~rα) and χ−∗(kf , ~rα) are the distorted waves in the entrance and exit channels,
respectively. We have used the notation ~r = (~r1, . . . , ~rA) and ~r0 for the laboratory coordinates of the
target nucleons and the projectile, respectively. The channel coordinate is ~rα = ~r0 − 1

A

∑
i=1,...,A ~ri. We
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introduce internal coordinates which are defined with respect to the center of mass of the target nucleus,
~ξj = ~rj − 1

A

∑
i=1,...,A ~ri, and assume the interaction between projectile and target to be of two-body type:

V (~r0, ~r) =
∑

j=1,...,A

V (|~r0 − ~rj |) =
∑

j=1,...,A

V (|~rα − ~ξj |) . (5)

The matrix element of Eq. 4 then takes the form:

M =
∑

j=1,...,A

∫
d~rα d~ξ1 . . . d~ξA χ−∗(kf , ~rα)Ψ(A)∗

f (~ξ1, . . . , ~ξA)

× V (|~rα − ~ξj |)Ψ(A)
i (~ξ1, . . . , ~ξA)χ+(ki, ~rα) , (6)

We note that any A-body wave function can be written in the following form [35]:

Ψ(A)
k (~ξ1, . . . , ~ξA) =

1√
A

∑
n

A[φk
n(~ξ1)Ψ(A−1)

n (~ξ2, . . . , ~ξA)] . (7)

Here Ψ(A)
k (Ψ(A−1)

n ) denotes the fully anti-symmetric wave function of the k-th (n-th) excited state of the A-
body ((A−1)-body) system, φk

n(~ξ1) is the associated one-body overlap function, and A is an (“inter-cluster”)
antisymmetrization operator that ensures proper behavior with respect to exchange between the labels ~ξ1

and ~ξj (j = 2, . . . , A). Note that this expansion is exact if the sum includes all states of the (A − 1)-body
system, including continuum states.

Using the orthonormality of the (A− 2)-body functions Ψ(A−1)
n and Ψ(A−1)

m , we obtain

M =
∑

j=1,...,A

1
A

∑
m

∫
d~rα dξj χ−∗(kf~rα)φf∗

m (~ξj)V (|~rα − ~ξj |)φi
m(~ξj)χ+(ki~rα)

=
∑
m

∫
d~rα dξ1 χ−∗(kf~rα)φf∗

m (~ξ1)V (|~rα − ~ξ1|)φi
m(~ξ1)χ+(ki~rα) , (8)

with the sum running over all states Ψ(A−1)
m of the (A−1)-body system. In the derivation of this expression,

we have neglected the effects of the antisymmetrization operator and used the fact that the terms for each
value of j are identical. The importance of corrections due to the antisymmetrization present in Equation 7
remains to be studied. Recoil effects, as well as exchange between target and projectile nucleons, have also
been neglected in the above discussion. The former issue will be addressed below, while the latter will be
assumed negligible, since the focus here is on inelastic alpha scattering and we treat the alpha particle as
inert.

In general, the overlap functions φk
n are very complicated since they contain information on the structure

of both the A and (A − 1)-body systems. In many practical applications, however, they are approximated
by single-particle wave functions ϕk

n that are solutions to the one-body Schrödinger equation with a local
potential. Positive-energy solutions, corresponding to scattering states, are normalized asymptotically, while
the norm of a negative-energy solution is given by the associated spectroscopic factor, Sk

n =
∫

dr|ϕk
n(r)|2,

with Sk
n ≤ 1.

It is instructive to consider Equation 8 in the strict independent-particle model. In this limit, the overlap
functions reduce to single-particle functions with norm one and each term in the sum (

∑
m . . .) corresponds

to a nucleon making a transition from an inital orbital ϕi
m to a final orbital ϕf

m (see Figure 2). The energy
associated with this transition is Eex = Emh

+Emp
, where Emp

and Emh
are the binding energies of the hole

and particle orbitals, respectively. A more realistic nuclear-structure model includes nuclear interactions
beyond the mean field of the independent-particle model.

2.3 Inelastic scattering to a region of high level density

We are interested in describing an inelastic-scattering process that excites a nucleus from an intial state Ψ(A)
i

to a final, highly-excited state Ψ(A)
f at energy Eex. In general, we do not have a reliable description of the
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Figure 2: Particle-hole excitations included in the model of the inelastic scattering process. A nucleon makes
the transition from an occupied, bound single-particle state (open circle) to an empty single-particle state
(filled circle). Transitions to bound as well as unbound (resonance) states have to be considered.

structure of Ψ(A)
f . However, we are interested in a region of high level density and need to be concerned

only with average properties of the cross section. This allows us to introduce some simplifications. If we
assume that one-step inelastic scattering will create some linear combination of particle-hole excitations in
the target nucleus, we can write the relevant matrix element in the form:

Mph =
∑

mh,mp

a(mh,mp)
∫

d~rα dξ1 χ−∗(kf~rα)ϕ∗mp
(~ξ1)V (|~rα − ~ξ1|)ϕmh

(~ξ1)χ+(ki~rα) , (9)

where ϕmh
(ϕmp

) is a single-particle orbital that is occupied (empty) in the initial target nucleus and empty
(occupied) in the final state. The sum

∑
mh,mp

. . . includes all particle-hole combinations that are consistent
with the relevant conservation rules (energy, angular momentum, parity). Each weight factor a(mh,mp)
provides a measure of the strength with which a particular (mh,mp) combination is represented in the state
Ψ(A)

f , i.e.

a(mh,mp) ≡ 〈Ψ(A)
f |Φ(A)

mh,mp
〉 , (10)

where Φ(A)
mh,mp denotes the A-body configuration that is obtained when a nucleon is removed from an occupied

single-particle orbital ϕmh
of the reference state and placed into an empty orbital ϕmp . The reference state

relevant for our purposes is the ground state of the target nucleus, Ψ(A)
i . Obviously, the weight factors

contain information on the structure of both the initial and the final target states. Here we will introduce a
simple model for these factors.
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In the strict independent-particle model (IPM), the configuration Φ(A)
mh,mp has a sharp energy, E(mh,mp) =

Emh
+Emp

, where Emp
and Emh

are the binding energies of the hole and particle orbitals, respectively. In a
more realistic description, this particle-hole configuration is spread over many A-body states, i.e. the weight
factor of Equation 10 is a function of energy, a(mh,mp) = f(E−E(mh,mp)), with

∫∞
∞ dE f(E−E(mh,mp)) = 1.

We take the distribution to be of Lorentzian shape, centered at E = E(mh,mp):

f(E − E(mh,mp)) =
1
2π

Γmh,mp

(E − E(mh,mp))2 + (Γmh,mp
/2)2

, (11)

where Γmh,mp
is the damping (or spreading) width of the particle-hole configuration. Single-particle ener-

gies and wave functions are obtained in Section 3 and the appropriate values for the damping widths are
determined in Section 4.

Contributions from different particle-hole excitations interfere since the inelastic scattering cross section
is proportional to the square of the matrix element Mph. In a further simplification, we assume that we can
neglect the cross terms, i.e. we approximate the inelastic cross section by the incoherent sum

dσ

dΩ
≈

∑
mh,mp

|a(mh,mp)|2
(

dσ

dΩ

)
mh,mp

. (12)

Here
(

dσ
dΩ

)
mh,mp

denotes the cross section for creating the particle-hole excitation (mh,mp) at energy
E(mh,mp); it is proportional to the square of

µf
mh,mp

=
∫

d~rα dξ1 χ−∗(kf~rα)ϕ∗mp
(~ξ1)V (|~rα − ~ξ1|)ϕmh

(~ξ1)χ+(ki~rα) . (13)

Cross sections for inelastic scattering to specific particle-hole excited configurations are presented in
Section 6. The incoherent-sum approximation is then used to calculate the total cross section for producing
90Zr at 10 MeV excitation energy via inelastic scattering with 140 MeV alpha particles. The results are
discussed in Section 7.

2.4 Recoil effects

In Equation 8, we have neglected recoil effects. To avoid introducing spurious excitations of the A-body
target nucleus into our model, we employ internal coordinates, which are defined with respect to the center
of mass of the target. As a result, target excitations are induced by the interaction of the projectile with an
individual nucleon (which moves the nucleon relative to the center of mass of the target), as well as by the
interaction of the projectile with the remainder of the target, the ‘core’ (which moves this remainder relative
to the center of the mass of the target). Both contribute to a given particle-hole excitation. To account for
this, we replace µf

mh,mp
in Equation 13 by

µmh,mp = µf
mh,mp

+ µc
mh,mp

, (14)

where

µc
mh,mp

=
∫

d~rα dξ1 χ−∗(kf~rα)ϕ∗mp
(~ξ1)UF (|~rα +

1
A− 1

~ξ1|)ϕmh
(~ξ1)χ+(ki~rα) . (15)

Here ~rα + 1
A−1

~ξ1 is a vector that points from the projectile to the center of mass of the (A− 1)-body ‘core’
and UF is an optical potential that is obtained by folding the two-body interaction with the density of the
core. The potential is taken to be independent of the excitation energy of the (A − 1)-body core. We will
approximate it by a phenomenological optical potential that describes the interaction of the projectile with
the relevant (A− 1)-body nuclear system (89Zr or 89Y here).

Note that the formalism described here does not assume that the target nucleus has a core-plus-valence
structure with an inert core containing orbitals which do not participate in the nuclear excitation. Instead,
nucleons from each occupied orbital can be excited by inelastic scattering (subject to energy conservation).
This is reflected in the sum over all occupied states mh in Equation 12. Each ‘hole’ term corresponds to

10



a particular ‘core’ configuration and contributions from the projectile interacting with both the nucleon
involved in the particle-hole transition and with the remaining core need to be included in the cross section
calculation.

Details of the formalism summarized here are discussed elsewhere [28]. For the application discussed
in this report, we employed the direct-reaction code Fresco [75] to calculate the individual cross sections(

dσ
dΩ

)
mh,mp

. The optical model potentials for the projectile-target and projectile-core interactions are dis-

cussed in Sections 5.1-5.2 and the form of the projectile-nucleon interaction V (|~rα − ~ξ1|) is discussed in
Sections 5.3-5.4.
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3 Single-nucleon Orbitals for Particle and Hole States

To obtain DWBA cross sections for inelastic scattering we need to calculate the matrix element given in
Equation 14 for all possible particle-hole combinations (mp,mh) in the energy range of interest. Here, we
are interested in obtaining Jπ distributions for 90Zr excited to Eex ≈ 10 MeV, i.e. we need to consider 1p-1h
excitations that have energies lying in an interval of several MeV below Eex to several MeV above Eex. In
particular, we need to determine wave functions for the single-particle orbitals ϕmp

and ϕmh
. We obtain

the bound (occupied as well as empty) orbitals by solving the one-body Schrödinger equation with a local
potential. We use the real part of the global optical model by Koning and Delaroche [54], which includes
volume, surface, and spin-orbit terms, and adjust the strength of the volume term in order to reproduce
experimental binding energies and subsequently calculate the associated wave functions. Fortunately, the
structure of 90Zr, the nucleus of interest here, has been extensively studied. Experimental information on the
single-particle binding energies EB in 90Zr is available from pickup, stripping, and knock-out experiments.
The literature values used for our study are summarized in the next section. Throughout this report,
we list the binding energies as positive values for bound states and negative values for resonance states.
We also determine, separately for neutrons and protons, average potentials that yield overall good fits to
the relevant binding energies. These average potentials are used to determine the wave functions of the
unbound orbitals. For our applications, we are primarily interested in those unbound states that do not
decay by particle emission (i.e. correspond to breakup of the target), but lead to np-nh excitations. These
are best approximated by single-particle resonances. In Section 3.2 we determine the neutron and protons
resonance energies by calculating the relevant phase shifts. The associated wave functions can be described
approximately in the weak-binding approximation or by employing bin functions. Wave functions and cross
sections obtained from these methods are compared to each other in Sections 3.3 and 3.4, respectively.

3.1 Single-particle binding energies and the binding potential

Information on single-particle binding energies can be obtained from one-nucleon pickup and stripping re-
actions. Table 1 lists the energies for occupied and empty neutron states in the nucleus 90Zr . We refer
to the occupied states as “hole” state (states 1–5) and the empty states as “particle” states (states 6–10).
They correspond to hole states in 89Zr and particle states in 91Zr , respectively. Energies for the former are
obtained from 90Zr(p,d)89Zr measurements, see Table IV of Ref. [27], and energies for the latter result from
one-neutron transfers with Ne isotopes, see Table I of Ref. [44]. The Fermi energy is taken to be the energy
that lies halfway between the last occupied and the first unoccupied neutron orbital, i.e. EF (n,90Zr)=9.78
MeV.

Table 1: Literature values for binding energies of single-particle neutron orbitals, EB . States 1-5 are occupied
(“hole”) orbitals, and states 6-10 are bound unoccupied (“particle”) orbitals. The symbol Eex refers to the
exciation energy in the relevant final nucleus, 89Zr or 91Zr. It is related to the binding energy EB via the
neutron separation energy in 90Zr: EB = Eex + Sn, where Sn(90Zr) = 11.970 MeV and Sn(91Zr) = 7.1945
MeV.

No. orbital n l j “Eex” [MeV] EB [MeV]
1 1f7/2 1 3 3.5 9.02 20.99
2 1f5/2 1 3 2.5 2.91 14.88
3 2p3/2 2 1 1.5 2.14 14.11
4 2p1/2 2 1 0.5 1.11 13.08
5 1g9/2 1 4 4.5 0.40 12.37
6 2d5/2 2 2 2.5 0.00 7.195
7 3s1/2 3 0 0.5 1.20 5.990
8 1g7/2 1 4 3.5 2.19 4.995
9 2d3/2 2 2 1.5 2.03 5.153
10 1h11/2 1 5 5.5 4.05 3.145
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Table 2 lists binding energies for proton single-particle states. The data are taken from Y. Wang et al.
[76], Table III, which compiles information from other references. The results for the hole orbitals (states
1-7) are based on the (e, e′p) data from den Herder et al. [23] and the energies for the particle orbitals (states
8-10) are based on (3He,d) data from Finkel et al. [40]. The Fermi energy for protons in 90Zr is found to be
EF (p,90Zr)=6.75MeV, which is in agreement with the valued 6.8 MeV, determined by Wang et al. [76].

Table 2: Literature values for binding energies of single-particle proton orbitals. States 1-7 are occupied
(“hole”) orbitals, and states 8-10 are bound unoccupied (“particle”) orbitals, EB . The symbol Eex refers to
the exciation energy in the relevant final nucleus, 89Y or 91Nb . The proton separation energies for 90Zr and
91Nb are Sp(90Zr ) = 8.3548 MeV and Sp(91Nb ) = 5.1588 MeV. Note: In Ref. [76], the energy value of 23.8
MeV is an average for the 1d5/2 and 1d3/2 orbits. Here, we assign both the same energy.

No. orbital n l j “Eex” [MeV] EB [MeV]
1 1d5/2 1 2 2.5 15.45 23.80
2 1d3/2 1 2 1.5 15.45 23.80
3 2s1/2 2 0 0.5 13.45 21.80
4 1f7/2 1 3 3.5 8.646 17.00
5 1f5/2 1 3 2.5 2.446 10.80
6 2p3/2 2 1 1.5 2.046 10.40
7 2p1/2 2 1 0.5 0.00 8.3545
8 1g9/2 1 4 4.5 0.004 5.11
9 2d5/2 2 2 2.5 3.85 1.30
10 1g7/2 1 4 3.5 4.81 0.34

The binding energies from the tables above were used to obtain average binding potentials for neutrons
and protons in 90Zr, respectively. The real part of the global optical potential from Koning and Delaroche
was used to fix all parameters, except for the strength of the Wood-Saxon volume term, which was adjusted
to obtain an overall good fit to the single-nucleon binding energies above. The resulting potential has the
form:

Vbind(r) = VC(r)− V0
1

1− exp
(

r−R0
a0

) − Vls
~2

2m2
πc2

exp
[
−

(
r−Rls

als

)]
alsr

(
1 + exp

[
−

(
r−Rls

als

)])2
~l · ~s (16)

where ~2/(2m2
πc2) ≈ 2, Rx = rxA

1/3
target for x = 0, ls, C, and VC(r) is the Coulomb potential. The parameters

for the average neutron and proton binding potentials are listed in Table 3. In subsequent calculations that
involve resonance (unbound particle) states, these parameters are held fixed. In calculations that determine
wave function of the bound states, the strengths V0 are adjusted to reproduce the binding energies above.

Table 3: Parameters for the neutron and proton binding potentials. Note that the radii r0, rls, and rC have
to be scaled by A

1/3
target.

Parameter Neutrons Protons
V0 [MeV] 53.2320 61.0030
r0 [fm] 1.2130 1.2130
a [fm] 0.664 0.664

Vls [MeV] 6.1500 5.9800
rls [fm] 1.0410 1.0410
als [fm] 0.5900 0.5900
r0C [fm] n/a 1.2400
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3.2 Resonance energies via phase shifts

Solving the radial Schrödinger equation with the above potentials for positive energies allows us to determine
the single-particle resonance energies and wave functions. We have employed two different methods for
determining the resonance energies: a) the method of analytic continuation of the coupling constant (ACCC
method), and b) the calculation of phase shifts as a function of energy. The ACCC method is based on
the assumption that resonances can be thought of as the continuation of bound states when the strength
of the binding potential decreases. In recent years, the ACCC method has been explored and applied for
both spherical and deformed systems [73, 74, 20]. Energies, widths, and wave functions for resonances have
been calculated in the ACCC approach and compared to exact calculations. The ACCC results were found
to provide useful approximations to the quantities obtained with the more complex and time-consuming
exact methods. In the current context the method was employed to obtain a first estimate of the possible
single-particle resonance energies for both protons and neutrons. The results were then employed to ensure
that the determination of resonance energies from a phase shift analysis did not miss narrow resonances.

More specifically, the neutron and proton potentials given in Equation 16 and Table 3 were used to deter-
mine the binding energies for single-particle states ϕnlj(r) that were expected to correspond to resonances.
The depth V0 was increased so that the orbitals ϕnlj(r) were bound by the potential. Subsequently, the
strength of the potential was stepwise decreased and the binding energies of the orbitals were determined as
a function of the parameter V0. The resulting functions EB(V0) were then extrapolated to the point where
the parameter V0 coincided with the value listed in Table 3 and the extrapolated energy was taken to be the
estimated resonance energy, EACCC

nlj for the orbital of interest. While this method does not guarantee the
existence of a resonance at energy EACCC

nlj , it allows for a more efficient search of the resonance energy when
the phase shift analysis is employed.

Subsequently, the one-body radial Schrödinger equation was solved for positive energies and the phase
shifts of the single-particle scattering functions were determined as a function of energy. Resonance energies
Eres

lj were determined by the requirement that the phase shift has to rise through 90 degrees at Eres
lj .

The phase shifts for various neutron and proton scattering states are plotted in Figure 3 and in Figure 4,
respectively, and the resulting resonance energies are listed in Tables 4 and 5. Since the phase shift rises
rapidly near a resonance, cubic spline fits were used to improve the determination of the resonance energy.
The resonance states are completely characterized by their energy, Eres

lj , and (l, j) quantum numbers. For
convenience, we also assign a label n as follows: For fixed depth, V0, the binding potential, Vbind has bound
states labeled by (n, l, j), where n = 1, 2, 3, . . . is the number of nodes in the single-particle bound-state wave
function (n includes the node at the origin, but not at inifinity, so n > 0). For each pair (l, j) there exists a
number nmax(l,j) that gives the number of nodes in the weakest-bound single-particle state. With increasing
energy, we then label the resonance states ϕres

lj (r) with an additional quantum number n = nmax(l,j) + 1,
nmax(l,j)+2, . . .. While resonance states have an infinite number of nodes, the quantum label n so associated
with a resonance can be related to the number of nodes in the single-particle bound-state orbital that will
later on be used to approximate the resonance function under consideration.
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Figure 3: Calculated phase shifts for neutron scattering states associated with the potential given in Equa-
tion 16 and Table 3. The legend shows the quantum labels (n, l, j), where (l, j) give the orbital and total
angular momentum values of the single-particle resonance and the label n has been assigned as described in
the text.
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Figure 4: Calculated phase shifts for proton scattering states associated with the potential given in Equa-
tion 16 and Table 3. The labels are defined in analogy to those of Figure 3.
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Table 4: Energies for neutron resonances in 90Zr from phase shift calculations. “No.” labels the single-
particle neutron state for the potential under consideration; it is a continuation of the labels in Table 1.
Eres

lj is the resonance energy, as determined from the calculated phase shifts shown in Figure 3. The column
labeled “comments” lists the calculated phase shift at the resonance energy. Since the phase shift rises
rapidly near the resonance energy and since the (finite) energy step size determines the precision in the
phase shift calculation, the exact resonance energy is difficult to determine; the “comments” column lists
the phase shift at Eres

lj . The quantum labels (l, j) give the orbital and total angular momentum values of
the single-particle resonance and the label n has been assigned as described in the text.

No. orbital n l j Eres
lj [MeV] Comments

11 1h9/2 1 5 4.5 5.28 δl=89.24
12 2f7/2 2 3 3.5 1.09 δl=91.75
13 2f5/2 2 3 2.5 2.89 δl=89.81
14 3p3/2 3 1 1.5 0.75 δl=86.90
15 3p1/2 3 1 0.5 (1.21) no resonance
16 1i13/2 1 6 6.5 7.85 δl=92.67
17 1i11/2 1 6 5.5 15.48 δl=89.96
18 1g9/2 1 4 4.5 (12.91) no resonance
19 1g7/2 1 4 3.5 (16.15) no resonance
20 3d5/2 3 2 2.5 n/a no resonance
21 3d3/2 3 2 1.5 n/a no resonance
22 4s1/2 4 0 0.5 n/a no resonance
23 1j15/2 1 7 7.5 18.20 δl=89.97
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Table 5: Energies for proton resonances in 90Zr from phase shift calculations. The labels are defined in
analogy to those of Table 4. The ACCC method was very useful for determining the location of the proton
2d3/2 state at Eres

2,3/2 = 1.22 MeV, since the resonance is extremely narrow (≈0.2 eV). The resonance was

estimated to be at Eres,ACCC
2,3/2 = 1.07 MeV.

No. orbital n l j Eres
lj [MeV] Comments

11 3s1/2 3 0 0.5 n/a no resonance
12 2d3/2 2 2 1.5 1.22 90.0
13 1h11/2 1 5 5.5 3.78 δl=90.00
14 1h9/2 1 5 4.5 11.43 δl=90.0
15 2f7/2 2 3 3.5 7.18 δl=90.00
16 2f5/2 2 3 2.5 9.81 δl=80.00
17 3p3/2 3 1 1.5 9.24 δl=90.00
18 3p1/2 3 1 0.5 (10.62) no resonance
19 1i13/2 1 6 6.5 14.14 δl=89.95
20 1i11/2 1 6 5.5 21.83 δl=90.0
21 2g9/2 2 4 4.5 18.23 δl=90.00
22 2g7/2 2 4 3.5 (25.93) δl=66.87 (no resonance)
23 3d5/2 3 2 2.5 n/a no resonance
24 3d3/2 3 2 1.5 n/a no resonance
25 4s1/2 4 0 0.5 n/a no resonance
26 1j15/2 1 7 7.5 24.73 δl=90.00
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3.3 Weak binding versus bin description: Radial shape of the single-particle
wave function

While it is straightforward to calculate single-particle wave functions ϕnlj(r) for bound states, there are
various possibilities for dealing with reactions that involve continuum (positive-energy) states. It is not
immediately obvious how to handle the continuum, since it includes both a structureless (nonresonant)
continuum, i.e. states that correspond to the breakup of a nuclear system, and resonance states. For our
purposes it is appropriate to consider single-particle resonance states.

Many reaction theory applications employ weakly-bound orbitals to approximate resonance functions.
Alternatively, it is possible to define “continuum bin states” Φ(r) as energy averages of positive-energy
eigenstates of the potential under consideration [66, 3, 75]:

Φ(r) =

√
2

πN

∫ k2

k1

w(k)ϕk(r)dk . (17)

Here ϕk(r) is a positive-energy (Ek = ~2k2/(2µ)) solution of the radial Schrödinger equation with the
potential Vbind(r), w(k) is some weight function, the form of which is chosen according to the problem under
consideration [75], and N =

∫ k2

k1
|w(k)|2dk. The bin states are normalized to unity and can be constructed to

be orthogonal to all bound states and to other bin states (for energy-independent potentials). They play a
prominent role in applications of the CDCC (Continuum-discretized coupled-channels) approach [66], which
incorporates the effects of the continuum in descriptions of transfer and breakup reactions. In order to
describe narrow resonances, we select w1(k) = exp(−iδk)T ∗

k , where δk is the scattering phase shift for ϕk(r)
and Tk is the T-matrix element for ϕk(r). An alternative definition of the weight factor, w2(k) = exp(−iδk),
results in bin functions that are more appropriate for the description of breakup states. Below we compare
wave functions calculated with both prescriptions to each other and to weakly-bound wave functions. We
also vary the width of the energy bin, Ek2 − Ek1 .

Figure 5 (top panel) shows single-particle wave functions obtained in the weak binding approximation
for binding energies EB = 4.0 MeV, 2.0 MeV, . . ., 0.05 MeV, compared to bin functions, calculated with the
weight factor w1(k) and energy width Ek2 −Ek1= 4.0 MeV. Both a 1h9/2 (left side) and a 2f7/2 (right side)
resonance are considered. In both cases, we find that the radial shapes of the wave functions obtained in the
weak-binding approximation exhibit little dependence on the selected binding energy. At radii smaller than
the range of the nuclear potential, the weak-binding solutions are similar to the bin functions. For larger
radii, they decay exponentially, while the bin functions show slowly-damped oscillations, as expected.

Figure 5 (bottom panel) illustrates the effect of different prescriptions for calculating the bin functions.
Bin wave functions, calculated with two different weight factors w1(k) and w2(k), and two different energy
widths Ek2 − Ek1= 2.0 MeV and 4.0 MeV, are compared to each other and to the weakly-bound orbitals
for EB = 0.05 MeV. The bin functions obtained with the weight factor w1(k) provide the closest match to
the wave functions calculated in the weak-binding approximation. Overall, the different prescriptions for
constructing bin functions result in large variations in the shape of the bin wave functions. The effects of
these variations on inelastic scattering cross sections is studied in the next section.

3.4 Weak binding versus bin description: Scattering cross sections for selected
single-nucleon particle-hole excitations

Inelastic scattering cross sections associated with the creation of particle-hole excitations depend on the
radial wave functions of the single-nucleon hole and particle states. Here we investigate the sensitivity of the
cross section to variations in the radial shape of the final (particle) state. We consider one-neutron transitions
from an initial 1g9/2 orbital at EB(1g9/2) = 12.37 MeV to final resonance orbitals 1h9/2 at EB(1h9/2) =-5.28
MeV and 2f7/2 at EB(1h9/2) =-1.09 MeV. In both cases, we consider final 90Zr states with Jπ = 3−.2 Details
of the calculations will be given in the next few sections.

In Figure 6 (top panel), we compare the results obtained with the weakly-bound wave functions, for
various values of the binding energies, to each other and to the results obtained with bin wave functions.
In the bottom panel of the figure, we show the effects of using different prescriptions for the bin functions

2Negative binding energies are used to indicate single-particle resonance energies: Eres
nlj = −EB(n, l, j).
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on scattering cross sections. The calculations used the standard procedure for determining the bound-state
function for the 1g9/2 orbital and employed the wave functions shown in the previous section for the 1h9/2

and 2f7/2 orbitals.
We observe that there is a strong dependence of the scattering cross section on the prescription used for

the bin functions (see lower panels of Fig. 6). Furthermore, the magnitude of the cross section variation
depends on the final state considered. For example, the cross sections at 5◦ vary by about a factor of two
in the case that involves the 1h9/2 orbital and by more than an order of magnitude in the example that
involves the 2f7/2 orbital. In contrast, the weak-binding results yield cross sections that vary very little for
binding energies between EB = 4 MeV and 0.05 MeV. This is not surprising given the results for the radial
wave functions discussed in the previous section.

As mentioned above, a proper treatment of the continuum is not readily available for Surrogate applica-
tions and we have to resort to approximations. In particular, we assume that nucleons which are promoted
to continuum states (via inelastic scattering) populate single-particle resonances. Here we have investigated
the sensitivity of inelastic scattering cross sections to parameter variations in two possible descriptions of the
resonance states. The bin description has exhibited much more sensitivity to the selected parameters than
the weak-binding approach. While the bin description is conceptually attractive, it introduces additional
uncertainties in the cross section calculations due to this parameter dependence. We thus choose to use the
weak-binding approximation for calculating resonance wave functions in the remainder of this report.
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Figure 5: Radial single-particle resonance functions. Top panel: Wave functions obtained in the weak binding
approximation for binding energies EB = 4.0 MeV, 2.0 MeV, . . ., 0.05 MeV, are compared to bin functions,
calculated with the weight factor w1(k) (see text). Bottom panel: Bin wave functions, calculated with two
different weight factors w1(k) (ISC=4) and w2(k) (ISC=2), and two different energy widths Ek2 −Ek1= 2.0
MeV (w=2) and 4.0 MeV (w=4), compared to a weakly-bound wave function.
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Figure 6: Inelastic scattering cross section for selected particle-hole excitations. Top panel: Cross sections
obtained in the weak-binding approximation for EB = 4.0 MeV, 2.0 MeV, . . ., 0.05 MeV, compared to
calculations using bin functions with the weight factor w1(k). Bottom panel: Cross sections obtained with
bin wave functions, calculated with two different weight factors w1(k) (ISC=4) and w2(k) (ISC=2), and
two different energy widths Ek2 −Ek1= 2.0 MeV (w=2) and 4.0 MeV (w=4), compared to results from the
weak-binding approximation.
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4 Damping widths for particle-hole excitations

The model outlined in Section 2 requires that we determine the damping widths Γmh,mp
of all particle-hole

excitations that may contribute to the inelastic scattering cross section of interest. The damping widths of
these states arise from their coupling to more complicated (2p-2h, etc.) configurations. It is this coupling
that is driving the eventual formation of a compound nucleus.

The damping width of a given particle-hole excitation (mh,mp) can be related to the damping widths
of the particle (mp) and hole (mh) states of which the excitation is composed [12]. In principle, one has to
take into account possible correlations between the particle and the hole, especially in collective states. For
our application we make the simplifying assumption that the particle and the hole decay independently of
each other. This allows us to write the damping width as:

Γmh,mp
(Emh,mp

) = Γmh
(Emh

) + Γmp
(Emp

) , (18)

where Emh,mp
= Emh

+ Emp
, and Γmp

and Γmh
denote the damping widths of the single-particle and single-

hole states, respectively. Below we will determine the widths of the single-particle and single-hole states for
the neutron and proton orbitals listed in Tables 1, 2, 4, and 5.

4.1 Single-particle damping widths

Empirical information on the widths of single-particle orbitals can be obtained from single-nucleon transfer
(pickup and stripping) reactions and (direct) nucleon-scattering experiments [12, 59]. Comparisons of ex-
perimental and theoretically predicted single-particle damping widths provide also stringent tests of nuclear
many-body theories. For practical applications, several analytic expressions, based on some underlying the-
oretical approach and developed to reproduce empirical results, can be found in the literature. The formulae
express the widths as a function of the difference between the single-particle binding energy (EB=Emh

or
Emp) and the Fermi energy EF , E = EB − EF :

1) The theory of infinite Fermi liquids predicts that the width should increase as the square of the energy
(for low excitation energies), see Ref. [12], Equation (2):

Γ(IFL) = aE2MeV . (19)

Bertsch et al. [12] deduce an approximate proportionality constant of a = 1
15 - 1

20 , based on available
single-particle widths from experiments.

2) Brown and Rho [18] deduce the following expression

Γ(BR) = 24
E2

E2 + 500
MeV . (20)

3) Jeukenne and Mahaux [49] suggest the following expression

Γ(JM) = 18
E4

E4 + 13.274
MeV . (21)

4) Smith and Wambach [72] use the following expression

Γ(SW ) = 10.75
E2

E2 + 182

1102

1102 + E2
MeV . (22)

The last three expressions are taken from Brand et al. [16], who compared the widths of spectral functions
calculated in a Green-function approach to the analytic functions shown here.

In Figure 7 the analytic functions for the widths of the single-particle orbitals are shown as a function
of the energy E = EB − EF . We select the prescription by Brown and Rho to determine the widths for
the single-particle (bound and resonance) states considered in Section 3. The results are listed in Tables 6
and 7 for all relevant neutron and proton orbitals, respectively. The widths shown there will be used for the
inelastic scattering calculations presented in this report.
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Table 6: Quantum labels, energies and widths of relevant neutron orbitals in 90Zr. “No.” labels the single-
particle neutron state for the potential under consideration. The quantum labels (l, j) give the orbital and
total angular momentum values of the single-particle resonance and the label n enumerates the occurrence
of the (l, j) quantum labels with increasing energy. EB is the single-particle binding energy and ΓBR is the
width of the state as determined using the analytical formula based on the work by Brown and Rho.

No orbital n l j EB [MeV] ΓBR [MeV]
23 1j15/2 1 7 7.5 -18.200 14.646
17 1i11/2 1 6 5.5 -15.480 13.456
16 1i13/2 1 6 6.5 -7.8500 9.2001
11 1h9/2 1 5 4.5 -5.2800 7.4894
13 2f5/2 2 3 2.5 -2.8900 5.8327
12 2f7/2 2 3 3.5 -1.0900 4.5875
10 1h11/2 1 5 5.5 3.1450 1.9421
8 1g7/2 1 4 3.5 4.9950 1.0509
9 2d3/2 2 2 1.5 5.1530 0.98544
7 3s1/2 3 0 0.5 5.9895 0.67039
6 2d5/2 2 2 2.5 7.1945 0.31664
5 1g9/2 1 4 4.5 12.370 0.31765
4 2p1/2 2 1 0.5 13.080 0.51149
3 2p3/2 2 1 1.5 14.110 0.86730
2 1f5/2 1 3 2.5 14.880 1.1866
1 1f7/2 1 3 3.5 20.990 4.8202

Table 7: Quantum labels, energies and widths of relevant proton orbitals in 90Zr. The labels are the same
as in Table 6.

No orbital n l j EB [MeV] ΓBR [MeV]
26 1j15/2 1 7 7.5 -24.73 15.953
20 1i11/2 1 6 5.5 -21.83 14.889
21 2g9/2 2 4 4.5 -18.23 13.326
19 1i13/2 1 6 6.5 -14.14 11.187
14 1h9/2 1 5 4.5 -11.43 9.5539
16 2f5/2 2 3 2.5 -9.81 8.5037
17 3p3/2 3 1 1.5 -9.24 8.1232
15 2f7/2 2 3 3.5 -7.18 6.7131
13 1h11/2 1 5 5.5 -3.78 4.3592
12 2d3/2 2 2 1.5 -1.22 2.7080
10 1g7/2 1 4 3.5 0.34 1.8016
9 2d5/2 2 2 2.5 1.30 1.3273
8 1g9/2 1 4 4.5 5.11 0.12228
7 2p1/2 2 1 0.5 8.3545 0.12227
6 2p3/2 2 1 1.5 10.40 0.62142
5 1f5/2 1 3 2.5 10.80 0.76071
4 1f7/2 1 3 3.5 17.00 4.1644
3 2s1/2 2 0 0.5 21.80 7.4795
2 1d3/2 1 2 1.5 23.80 8.8207
1 1d5/2 1 2 2.5 23.80 8.8207
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5 The Projectile-Target Interaction

Calculations of cross sections for direct reactions involving α particles require α-nucleus optical potentials.
Knowledge of these potentials is important for a variety of processes, such as elastic and inelastic scatter-
ing, transfer reactions, and radiative capture, involving a variety of targets and a wide range of energies.
Phenomenological α-nucleus potentials [61, 4, 55], as well as semi-microscopic potentials, based on a single-
folding [56, 48, 53] or double-folding [71, 51, 52, 2, 50] procedure, have been used over the years.

In the model employed here, 90Zr target excitations are induced via an inelastic scattering process in
which the α projectile interacts with the individual target nucleons, thus producing some superposition
of 1-particle 1-hole excitations. The formalism outlined in Section 2 requires that the interaction of the
projectile with the nucleon which is involved in a particular particle-hole transition is taken into account as
well as the interaction of the projectile with the remaining ‘core’ (89Zr or 89Y here). Furthermore, we need
the interaction of the projectile with the target nucleus (90Zr) as a whole in order to calculate the distorted
waves in the incoming and outgoing channels.

In a rigorous microscopic approach, one would start from a nucleon-nucleon force and obtain the α-
nucleon interaction via a single-folding procedure (integrating over the volume of the α-particle) and the
α-nucleus interaction via a double-folding procedure (integrating over the volumes of both the α-particle
and the target nucleus). However, since the inelastic scattering calculations presented in this report require
α-nucleus potentials for the target nuclei 89Y , 89Zr , 90Zr , 91Zr , 91Nb , for a wide range of energies, ranging
from tens of MeV to more than 100 MeV, we find it advantageous to make use of a phenomenological optical
potential with an analytic energy dependence. We employ the global optical potential by Avrigeanu et al.
[61, 4]. The form of the Avrigeanu potential is given in Section 5.1 below and elastic scattering cross sections
calculated with this potential are compared to experimental results in Section 5.2.

For the effective α-nucleon interaction, we employ an energy- and densitiy-independent Gaussian form.
Possible parametrizations for the Gaussian are given in Section 5.3 and the sensitivity of selected calculated
inelastic scattering cross sections to the parameter choices is discussed in Section 5.4.

5.1 The α-nucleus optical potential by Avrigeanu et al.

In 1987, Nolte et al. [61] derived a set of parameters for a global optical potential from α-nucleus scattering
with energies higher than 80 MeV. The authors employed the (Wood-Saxon) geometry and energy dependence
of an optical model introduced earlier by Put and Paans [64, 65] and compared their optical-model predictions
to elastic and inelastic scattering data. In 1994, Avrigeanu, Hodgson, and Avrigeanu [4] extended the
potential for lower energies in order to describe (n, α) reactions. They found good agreement with the
experimental data for (n, α) reactions on a variety of nuclei in the mass region A = 48–59.

The global optical α-nucleus potential of Avrigeanu et al. has the form:

UAHA
α−nucleus(r) = VC(r)− Vα

1

1− exp
(

r−Rv

av

) − iWα
1

1− exp
(

r−Rw

aw

) , (23)

where Rx = rxA
1/3
target and ax (x = v, w), are the radii and the diffuseness parameters of the potential wells,

and VC(r) is the Coulomb potential. The strengths of both the real and the imaginary components depend
linearly on the energy of the α particle. In addition, the depth of the real potential depends on Z/A1/3 while
the depth of the imaginary term scales with A1/3. The radii remain fixed, while the diffuseness parameters
decrease with increasing target size as ∝ A1/3. The parametrization for energies below as well as above 73
MeV are shown in Table 8.

5.2 Elastic α-scattering results compared to experimental data

To test the optical potential UAHA
α−nucleus(r), we have calculated elastic scattering cross sections for α + 90Zr

for various projectile energies. In Figure 8, we compare the cross sections to the experimental results by Put
and Paans [64, 65] (as given in the EXFOR database at the NNDC). The calculations show good agreement
with the experimental data, in particular for energies larger than 70 MeV. For more accurate calculations at
lower energies, it might be worthwhile investigating the potential by Atzrott et al. [2], which is based on a
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Table 8: Parametrization of the global α-nucleus potential by Avrigeanu, Hodgson, and Avrigeanu [4].

Parameter Value
Vα [MeV] 101.1 + 6.051·Z/A1/3 - 0.248 Eα

rv [fm] 1.245
av [fm] 0.817 - 0.0085 ·A1/3

Wα [MeV] 12.64 - 1.706·A1/3 + 0.200 Eα ; Eα < 73 MeV
28.82 - 0.006·A1/3 + 0.200 Eα ; Eα > 73 MeV

rw [fm] 1.570
aw [fm] 0.692 - 0.02 ·A1/3

rC [fm] 1.240

double-folding approach. Since we are primarily concerned with incoming α particles with energies around
100 MeV, we will use the potential by Avrigeanu et al. in the remainder of this report.

5.3 The effective α-nucleon interaction

Here we are concerned with the contribution of the projectile-nucleon interaction to the scattering cross
section. The goal is to calculate the matrix elements of Equation 13 for specific particle-hole excitations of
the target. To this end, an expression for the projectile-nucleon interaction Vαn(r) = V (|~rα− ~ξ|) is required,
where r = |~rα − ~ξ| is the distance between the nucleon and the center of mass of the projectile. Since we
are interested in the interaction of the alpha particle with a nucleon inside a nucleus, rather than in free
alpha-nucleon scattering, we require an effective interaction. We will focus on the form of the alpha-neutron
interaction and simply add a Coulomb term for the alpha-proton interaction.

The most popular form for the effective alpha-nucleon interaction is an energy- and density-independent
Gaussian function. Arguments that lead to this form for the interaction are given in Ref. [7], where
A.M. Bernstein obtains the α-nucleon potential by averaging the nucleon-nucleon interaction over the size
of the α particle using Gaussian shapes for the nn interaction and for the α-particle wave function. Early
forms of the effective alpha-nucleon interaction were purely real [7, 6], while the newer forms, such at those
of Refs. [10, 69, 68, 56], include a complex component that usually has the same shape and range as the real
part:

Vαn(r) = −V 0
αnexp(−K2r2) (24)

V 0
αn = v0 + iw0 (25)

Typically, the interaction Vαn(r) is folded with the density of a target nucleus to produce an optical α-nucleus
potential that is appropriate for cross section calculations for elastic or inelastic α scattering.

Many authors have employed the Vαn(r) parametrization introduced by Bertrand et al. [10], who studied
measurements of giant monopole and quadrupole resonances for 208Pb, 120Sn, 90Zr , 58Ni, and 46Ti, using
inelastic scattering of 152-MeV α particles. In Ref. [10], experimental results were compared to DWBA
calculations as well as to folding-model calculations, using Tassie transition densities and an effective α-
nucleon interaction. For each target considered, optimal strength values v0 and w0 were determined for
various range parameters µ = K−1 by fitting the calculations to elastic scattering data at small scattering
angles θ. Best values for µ were then obtained by carrying out χ2-fits. Essentially the same optimal value
for the range parameter, namely µ = 1.94 fm, was found for all target nuclei, see Figure 6 of Ref. [10].
The strengths parameters v0 and w0 determined in this manner for the different nuclei are listed in Table
III of Ref. [10]. For 90Zr the authors obtained v0 = 36.4 MeV and w0 = 21.1 MeV. Parameters based on
the Bertrand prescription were adopted by Satchler et al. [69, 68] in subsequent studies of inelastic alpha
scattering on several spherical nuclei.

Another popular parametrization was introduced in 1994 by Lund et al. [56], who studied the isospin
character of transitions to low-lying collective states in 90,92,94,96Zr from the ground states of the respective
nuclei. Their article reports on measurements of elastic and inelastic scattering of 35.4 MeV alpha particles.
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The data were analyzed using a deformed optical-model potential and a folding model, assuming transition
densities of the standard collective type and resulting from RPA calculations, respectively. Fitting the
calculations to the elastic scattering data resulted in v0 = 49.736 MeV and w0 = 16.774 MeV for the 90Zr
case. Parameters for other zirconium isotopes are given in Table V of Ref. [56]. The range parameter was
kept fixed at µ = 1.94 fm.

A range parameter of µ = K−1 = 1.94 fm has been seen to work well in many applications, so a standard
procedure is to use this value and to adjust the strengths v0 and w0 to reproduce the data of interest. It
should be noted, though, that there is currently not enough information available to uniquely determine a
set of optimal parameters for the α-nucleon interaction. For example, the choice of µ = 1.94 fm is based on
the experience that this value represents a good average of ranges required to produce folding potentials for
the description of elastic α-nucleus scattering data. However, a different parameter combination can produce
a similarly successful fit to elastic data, while resulting in an increase or decrease of the calculated inelastic
cross sections. This issue has been discussed by Horen et al. [48] and deserves further study. In addition, it
is possible to employ different range parameters for the real and imaginary parts of the interaction and/or to
consider a density-dependent form for the α-nucleon interaction, as was done, e.g., by Satchler and Khoa [70],
as well as by Kolomiets et al. [53].

In the present work, we will employ an energy and density-independent Gaussian function to represent
the effective projectile-nucleon interaction. In the next section, we will investigate the dependence of the
inelastic scattering cross section on the parameters chosen for the Gaussian. Specifically, we will present
cross section calculations for selected neutron particle-hole transitions leading to excited 90Zr states with
various Jπ values.

5.4 Sensitivity of the scattering cross sections to the parameter choice for the
projectile-nucleon interaction

Here we investigate how varying the parameters of the effective alpha-nucleon interaction Vαn(r) will affect
the inelastic alpha-nucleus scattering cross sections. We focus on a particular particle-hole excitation induced
in 90Zr by alpha scattering, namely the transition of a neutron from a bound 1g9/2 orbital to a bound 1h11/2
orbital. The resulting target excitation has an energy of 9.2247 MeV and can have total angular momentum
and parity values Jπ = 1−, 3−, 5−, 7−, and 9−. We will consider parametrizations employed by Bertrand [10],
Lund [56], and Horen [48]. The former two have the same Gaussian shape, characterized by a range parameter
fixed at µ = 1.94 fm, but different strength parameters v0 and w0. Horen et al. have not only varied the
strengths of the real and imaginary parts of Vαn(r), but have also considered adjusting the range parameter.
In order to study the effect of the range parameter, we select one of the parameter sets employed in Ref. [48],
namely, µ = 1.82 fm, v0= 88.200 MeV, and w0 = 10.900 MeV.

Figure 9 shows calculated inelastic-scattering cross sections for Jπ = 1−, 3−, 5−, and 7−. Each panel
gives results for the three parametrizations considered. We observe that varying the parameters has a clearly
visible effect on the resulting cross sections. For J > 1, the cross sections seem to differ by an overall factor,
while for J = 1, both the magnitude and the shape of the cross section changes, in particular for angles
between 20 and 40 degrees.

An overall rescaling of the individual cross sections will affect the total inelastic scattering cross section
that remains to be calculated, but not the predicted Jπ distribution of the excited target. To investigate this
issue further, we have plotted ratios of the individual cross sections for different parameter choices. The top
panel of Figure 10 gives the cross sections obtained with the Bertrand parameters divided by the relevant
cross sections obtained with the Lund parameters, for Jπ = 1−, 3−, 5−, and 7−. The ratios for angular
momenta larger than one are constant across the angular range considered and agree with each other. The
behavior of the Jπ = 1− curve, on the other hand, is clearly different. The bottom portion of the figure
shows analogous ratios with respect to the Horen parametrization, namely σ(Bertrand)/σ(Horen) on the left
and σ(Lund)/σ(Horen) on the right. We observe that the ratios for the J > 1 cases essentially agree with
each other in their angular dependence, but differ in their absolute values. The Jπ = 1− curve is again very
different from the other cases.

The behavior of the curves in Figure 10 can be understood by considering the different contributions
to the inelastic scattering cross sections studied here. Figure 11 shows the results of calculations for which
either the alpha-nucleon interaction or the alpha-core interaction has been set to zero. The lower right panel
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shows cross sections that contain only the alpha-core contributions: The solid line refers to the Jπ = 1−

case, while the dashed, short-dashed, and dotted lines (see insert) refer to Jπ =3−, 5−, and 7−, respectively.
The other three panels show cross sections that contain only the alpha-nucleon contributions: The Jπ =
1−, 3−, and 5− cases are shown in the top left, top right, and bottom left panels of the figure. Here, the
solid, dashed, and dotted lines correspond to the Horen, Lund, and Bertrand parameter sets, respectively.
We observe that the cross sections drop off with increasing angular momentum. While the cross section due
to the alpha-nucleon interaction decreases moderately with increasing J value, the drop in the alpha-core
cross section is quite dramatic: Where the former decreases by an order of magnitude, the latter drops by
6-8 orders of magnitude. Consequently, the contributions due to the alpha-core interaction can be neglected
in all but the Jπ = 1− case, where both parts of the projectile-target interaction contribute equally to
the overall cross section and produce interference effects. The fact that the alpha-core interaction is only
significant for Jπ = 1− and becomes negligible for larger J values has also been demonstrated analytically
in the PWBA approximation [25].

The Bertrand and Lund parametrizations of Vαn(r) differ in the strengths parameters v0 and w0 only.
Since the scattering cross sections are proportional to the square of the matrix element µmh,mp

(see Equa-
tion 14), we see that for situations in which the core contributions are negligible, the cross section ratio is
σ(Bertrand)/σ(Lund) = [(v(B)

0 )2 + (w(B)
0 )2]/[(v(L)

0 )2 + (w(L)
0 )2] = 0.5914, where the superscripts (B) and

(L) refer to the Bertrand and Lund parametrizations, respectively. The numerical value of this ratio agrees
with the ratio shown in the top panel of Figure 10 for Jπ = 3−, 5−, and 7−. This result is independent of
angular momentum.

The Horen parametrization contains a range parameter that differs from the one used by Bertrand and
Lund. Changing the range parameter affects the inelastic cross sections in a manner that depends on the
angular momentum of the final state, as can be inferred from the bottom panels of Figure 10 for Jπ =3−, 5−,
and 7−. Hence it will be useful study the dependence of the final Jπ distribution following inelastic alpha
scattering on the range parameter employed in the calculation.

Due to the interference of the contributions from the alpha-nucleon interaction with the contributions
arising from the alpha-core interaction, the Jπ = 1− inelastic scattering cross section is very sensitive to the
parametrization selected for Vαn(r) (see Figure 10 as well as the top left panel of Figure 9). Consequently,
cross section predictions for this angular-momentum value should be regarded with some caution. A com-
parison of a cross section calculation carried out in the formalism employed in this report with a calculation
based on transition densities obtained from an RPA approach is expected to provide further insights [26, 32].

Throughout the remainder of this document, we will employ the Lund parametrization for the α-nucleon
interaction.
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Figure 8: Elastic scattering cross sections for α + 90Zr, for various projectile energies. The experimental
results are taken from Put and Paans [64, 65].
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Figure 9: Cross sections for inelastic scattering of 140 MeV alpha particles from 90Zr . The calculations
show results for a process in which a target nucleon makes a transition from a 1g9/2 orbital to a 1h11/2
orbital. Final target states with Eex=9.22 MeV and Jπ = 1−, 3−, 5−, and 7− are studied and three different
parametrizations of the alpha-nucleon interaction are considered.
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Figure 10: Cross section comparisons for different parameterizations of the alpha-nucleon interaction. Shown
are the cross section ratios σ(Bertrand)/σ(Lund), σ(Bertrand)/σ(Horen), and σ(Lund)/σ(Horen) for Jπ =
1−, 3−, 5−, and 7−. The cross sections entering the ratios are those shown in the previous figure.
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Figure 11: Contributions to the inelastic scattering cross section arising from the alpha-nucleon and alpha-
core interactions. The process is the same as in Figure 9. The lower right panel shows cross section calcula-
tions that contain only the alpha-core contributions, while the other panels show cross section calculations
that contain only the effects of the alpha-nucleon interaction. For the latter case, three different parameter
sets have been considered (Lund, Bertrand, Horen).
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6 Scattering Cross Sections for Individual Particle-Hole Excita-
tions

The model employed in this work assumes that the inelastic scattering cross section for 90Zr(α,α′)90Zr∗ can
be expressed in terms of cross sections for producing uncorrelated particle-hole excitations in the target
nucleus. Specifically, the cross section is given as an incoherent sum of scattering cross sections ( dσ

dΩ )mh,mp

for individual particle-hole excitations (mh,mp) with weights |a(mh,mp)|2 that depend on the energy and
spreading widths of the particle-hole configurations (see Eq. 12 in Sect. 2.3). Below, we will show the
distribution of the neutron and proton particle-hole excitations generated in the model across an energy
range of Eex = 5 − 23 MeV for the target nucleus 90Zr∗ . We will illustrate the effect of the spreading,
and present the scattering cross sections associated with the individual particle-hole excitations. In the next
section, we will employ these ingredients to generate total elastic scattering cross sections for various energies
and show the contributions to the total cross section associated with different Jπ values in the compound
nucleus.

6.1 Distribution of particle-hole states

Using the single-nucleon orbitals listed in Table 6 (for neutrons) and Table 7 (for protons) as a starting point,
all possible particle-hole states were constructed by considering all allowed transitions from an occupied (hole)
orbit to an unoccupied (particle) orbit. For the target under consideration, 90Zr, we assumed that each orbital
is either fully occupied or completely empty. A generalization to partially occupied levels is straightforward.
For each particle-hole state the appropriate energy and spreading width were calculated and the possible
angular-momentum and parity values were determined. The resulting distributions of uncorrelated particle-
hole excitations are shown in Figure 12, arranged according to their Jπ values and given as a function of the
90Zr excitation energy. Neutron particles-hole excitations are shown in black, proton excitations are given
in red. Only states in the energy range 5-23 MeV are shown. The plot shows that for most energy regions,
a range of angular-momentum and parity values can be populated. Around Eex ≈ 10 MeV, e.g., negative-
parity states are seen to dominate, while around 15 MeV there is a more even distribution of positive and
negative parity states.

Incorporating many-body correlations in the description of the structure of the 90Zr target will affect
the energy of each particle-hole configuration and, moreover, will spread it over many excited many-nucleon
states that lie within several MeV of the energy of the uncorrelated state. The effect of the spreading
is accounted for via the approach described in Sections 2.3. It involves folding the cross sections for the
individual particle-hole excitations with Lorentzian distributions that approximate the effect of the many-
body correlations and that have widths which were determined in Section 4. The effect of the spreading is
illustrated in Figure 13 for negative parity states and the individual cross sections are discussed next.

6.2 Cross sections for particle-hole excitations (Lund parametrization)

The cross sections for exciting the individual particle-hole excitations are shown in Figures 14–17. The cross
section results are grouped by the Jπ values of the excited 90Zr state. Figures 14 and 15 display cross sections
for neutron particle-hole excitations for positive-parity and negative-parity states in 90Zr , respectively, while
Figures 16 and 17 show results for proton particle-hole excitations leading to positive-parity and negative-
parity states, respectively.

We observe that for a given Jπ combination, the cross sections have a characteristic shape, but differ in
magnitude by as much as a factor of 100. With increasing J value (which here corresponds to the angular-
momentum transfer l since we consider scattering of a spin-zero projectile from a spin-zero target), the
location of the first maximum moves to larger angles - a feature that is in line with an approximate description
of the scattering process in the Fraunhofer picture (strong absorption limit). This is also illustrated in
Figure 18, where the relationship between the angular momentum J and the location of the first scattering
maximum is plotted. We furthermore observe that, on average, the cross sections decrease with increasing
angular-momentum transfer.

Plotting the individual cross sections is not only instructive, it also serves the purpose of testing the
convergence of the calculations: The individual scattering cross sections can be obtained using various
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choices of the parameters that determine the details of the calculations, such as step sizes for integrations.
One of the signs that a calculation has not converged (for a particular energy or angular range) is the
occurrence of unexpected features on the calculated cross sections. An example of this can be seen in the
Jπ=6+ panel of Figure 14: At large angles, around 85◦-90◦ a few of the calculated cross sections exhibit
small “noise”. The effects for the case shown here have not been corrected for since they are very minor and
will not affect the final results.
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Figure 12: Energy distribution of uncorrelated particle-hole excitations in 90Zr. Shown are the energies of
all particle-hole states considered in our study. Neutron (proton) particle-hole states are given in black (red)
and the total angular momentum and parity of the excited 90Zr final state are indicated on the right side
within each panel. Cross sections for inelastic scattering to the states displayed here were calculated and are
shown below.
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on the right side within each panel. Compare also to Figure 12.
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Figure 14: Inelastic scattering cross sections for individual neutron particle-hole excitations. Shown are
calculated cross sections for inelastic alpha scattering processes that produce positive-parity excited 90Zr
states with a neutron particle-hole structure. The α -90Zr optical potential by Avrigeanu et al. (see Sec-
tions 5.1-5.2) has been employed for the alpha-core interaction and the Lund parametrization has been used
for the alpha-nucleon interaction (see Sections 5.3-5.4).
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Figure 15: Inelastic scattering cross sections for individual neutron particle-hole excitations. Shown are
calculated cross sections for inelastic alpha scattering processes that produce negative-parity excited 90Zr
states with a neutron particle-hole structure.
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Figure 16: Inelastic scattering cross sections for individual proton particle-hole excitations. Shown are
calculated cross sections for inelastic alpha scattering processes that produce positive-parity excited 90Zr
states with a proton particle-hole structure.
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Figure 17: Inelastic scattering cross sections for individual proton particle-hole excitations. Shown are
calculated cross sections for inelastic alpha scattering processes that produce negative-parity excited 90Zr
states with a proton particle-hole structure.
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7 Inelastic Scattering Cross Section for 90Zr(α, α′)90Zr∗ at Eα=140
MeV and resulting spin-parity distribution

Combining the energy distributions of the particle-hole states and the cross sections for the individual
particle-hole excitations shown in the previous section allows us to determine the 90Zr(α,α′)90Zr∗ scattering
cross section as a function of the angle of the outgoing α particle. Cross sections can be obtained for
producing the excited 90Zr nucleus at a particular excitation energy and for specified values of angular
momentum and parity. The sum of the partial cross sections for different Jπ values then gives the total
inelastic scattering cross section. While it is rare to find in the literature measured angular distributions
for inelastic scattering reactions that produce nuclei above the particle emission threshold, data for inelastic
α scattering experiments do exist for 90Zr. Wu et al. [77] measured complete energy spectra and angular
distributions for the bombardment of 27Al, 58Ni, 90Zr, 109Bi, and 232Th with 140 MeV α particles. They
presented results for outgoing p, d, t, 3He, and α particles for angles from 20◦ to 140◦.

7.1 Results

In Figure 19, our calculated inelastic scattering cross section for exciting 90Zr to Eex =10 MeV is compared
to experimental cross sections measured by Wu et al. [77], as quoted by Bonetti et al. [14]. The thick black
line in both panels of the figure shows the total inelastic scattering cross section calculated with the model
outlined in this report. The contributions from the various Jπ combinations are shown as well. For clarity,
contributions from positive and negative parity states have been plotted separately, in the left and right
panels, respectively.

For angles in the range of 50◦ to 90◦, we find that the calculated total scattering cross section is in good
agreement with the data, while the calculations underestimate the cross section at forward angles by a factor
on the order of 5. Note that no error bars are given in Ref. [14]. This level of agreement is not unreasonable
for a model that describes the highly-excited 90Zr nucleus in terms of uncorrelated particle-hole excitations.
Including many-body correlations, in particular collective effects, will provide a more realistic picture of the
scattering process and is expected to improve the agreement.

For the case shown in Figure 19, we find that the largest contributions to the cross section comes from
the 1− and 3− excitations, followed by contributions from 2+, 4+, and 5− excitations. To show this more
clearly, the probablilties for populating different Jπ states are shown in a linear plot in Figure 20, as a
function of the scattering angle. The distance between two adjacent curves gives the probability of finding
the spin and parity indicated by the values listed at the right end of the upper curve. For example, at 90◦,
we find about 0% contribution from 0+ states, 15% from 2+ states, 8% from 4+ states, etc. The left panel
gives the probabilities obtained by dividing the cross sections for the various Jπ values by the total inelastic
scattering cross section. The right panel shows probabilities that have been smoothed in order to account
for experimental uncertainties and “binning” in the angular measurements.

We observe that the Jπ distribution is, as expected, angle-dependent, with the largest uncertainties
occurring at forward angles (< 40◦). At larger angles, the probabilities are less sensitive to the angle of the
outgoing α particle. Knowing the angular-momentum and parity populations is important for the planning
and analysis of Surrogate experiments, since these distributions determine the weights F (E, J, π) for the
decay probabilities Gχ(E, J, π) that are to be determined or constrained via a measurement of Pδχ (see
Equation 2 in Section 1). Recent Surrogate experiments detected the outgoing particle at angles between
about 40◦ and 60◦. The spin-parity distribution for a particular angle of the outgoing α particle can be
obtained by making a cut in Figure 20 at the desired angle. This is illustrated in Figure 22 (left side), where
the results of such cuts are shown for 40◦, 60◦, and 90◦. At 60◦, for example, the highly excited nucleus is
dominated by Jπ =1− (38%) and 3− (36%) configurations. Contributions from 2+ (11%) , 4+ (6%) , and
5− (7%) excitations are also important, while larger angular momenta play a minor role.

The calculations can also be carried out for different nuclear excitation energies. Figure 21, e.g., shows
the analogous Jπ distributions for an energy of 12 MeV. We find that 2+ and 4+ contributions have become
more significant at this energy, while the 1−, 3−, and 5− contributions have declined relative to the 10 MeV
case. Spin-parity distributions for α angles of 40◦, 60◦, and 90◦ are also shown in Figure 22 (right side).

The results found here can be expected to change when additional correlations are included in the calcu-
lations. Since collectivity plays an important role in the location of the dipole, quadupole, etc. resonances,
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it becomes clear that a more complete picture has to include such many-body correlations. This issue will
be investigated in the future. It will be interesting to see the effect of the collectivity not only on the overall
cross section, but also on the spin-parity distributions of the excited nucleus.
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Figure 19: Inelastic scattering cross section for 90Zr(α, α′)90Zr∗ with Eα=140 MeV and Eα′=130 MeV. The
total scattering cross section (solid black line) is compared to experimental results (see text). Also shown
are the contributions to the scattering cross section that lead to various Jπ states in 90Zr∗. Contributions
from positive (negative) states are shown on the left (right).
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Figure 20: Probabilities for populating various Jπ states in 90Zr∗ following inelastic alpha scattering with
140 MeV projectiles that leave the target nucleus at excitation energy Eex =10 MeV. The left panel shows
the results of the calculation as described in the text, the right panel shows probabilities that have been
smoothed in order to account for experimental uncertainties and “binning” in the angular measurements.
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Figure 21: Same as in Fig. 20, but for excitation energy Eex =12 MeV.
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for outgoing α particles at 40◦, 60◦, and 90◦.
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8 Summary, Insights, and Recommendations

8.1 Summary of this work

Information on the compound-nuclear Jπ distributions occurring in Surrogate reactions is crucial for test-
ing the validity and limitations of the approximation schemes employed in current analyses of Surrogate
experiments, for moving beyond approximate treatments of Surrogate reactions, and for providing reliable
estimates of the associated uncertainties in the extracted cross sections.

Providing a proper description of the direct-reaction processes that lead to a compound nucleus in
a Surrogate reaction and formulating accurate predictions for the resulting compound-nuclear spin-parity
distributions is a nontrivial task. Theoretical descriptions are required for various types of direct reactions
that lead to unbound states in spherical, transitional, and well-deformed nuclei, as well as an understanding of
the subsequent damping process of the highly-excited intermediate nucleus into a compound system (and the
likelihood of particle emission prior to reaching equilibrium). So far, Surrogate experiments have employed
one- and two-nucleon transfer (pickup and stripping) reactions, inelastic scattering, and charge exchange
reactions.

In this report, a model for predicting the spin-parity distribution in a compound nucleus produced via
inelastic α scattering was developed. The focus was on obtaining a first, simple description of the direct-
reaction process and on providing the basis for a more complete treatment of the problem. The report
specified the approximations made in the present description and identified what a rigorous treatment of the
mechanisms that produce a compound nucleus entails.

The model presented here is based on the assumption that the inelastic scattering cross section for a
(near-)spherical nucleus can be approximately expressed in terms of cross sections for producing uncorrelated
particle-hole excitations in the target nucleus. Specifically, the cross section was given as an incoherent sum
of scattering cross sections ( dσ

dΩ )mh,mp for individual particle-hole excitations (mh,mp) with weights that
depend on the energy and spreading widths of the particle-hole configurations. The spreading (or damping)
widths Γmh,mp

of the particle-hole excitations arise from their coupling to more complicated (2p-2h, etc.)
configurations. It is this coupling that drives the eventual formation of a compound nucleus. The model
developed here employed an analytic expression suggested by Brown and Rho [18] for the damping widths.
The inelastic scattering cross sections were calculated for each individual particle-hole excitation using the
distorted-wave Born-approximation (DWBA) and the coupled-channels code FRESCO [75].

The case considered here involved producing the 90Zr∗ nucleus at excitation energies of 10 MeV and 12
MeV via inelastic scattering with 140 MeV α projectiles. The cross sections for the individual particle-hole
excitations were combined to yield the 90Zr(α,α′)90Zr∗ scattering cross section as a function of the angle
of the outgoing α particle, and the result was compared to data from inelastic α scattering experiments.
For angles in the range of 50◦ to 90◦, we found the calculated total scattering cross section to be in good
agreement with the data, while the calculations underestimated the cross section at forward angles by a
factor on the order of 5. This level of agreement is not unreasonable for a model that describes the highly-
excited 90Zr nucleus in terms of uncorrelated particle-hole excitations. Including many-body correlations, in
particular collective effects, will provide a more realistic picture of the scattering process and is expected to
improve the agreement.

A prediction for the compound-nucleus spin-parity distributions produced via inelastic scattering was
obtained from the calculations described above. The resulting Jπ distribution depends on the angle of
the outgoing α particle and exhibits large fluctuations at forward angles (< 40◦). At larger angles, the
probabilities are less sensitive to the angle of the outgoing α particle. Knowing the angular-momentum
and parity populations is important for the planning and analysis of Surrogate experiments: These distri-
butions determine the weights F (E, J, π) for the decay probabilities Gχ(E, J, π) that are to be extracted
from measurements of the coincidence probability Pδχ =

∑
J,π FCN

δ (Eex, J, π) GCN
χ (Eex, J, π) and subse-

quently employed to calculate the desired cross section, σαχ(Ea) =
∑

J,π σCN
α (Eex, J, π) GCN

χ (Eex, J, π)
(see Equations 1 and 2).
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8.2 Insights and recommendations

The calculations carried out in the simple model presented here exhibit some interesting features that should
be studied further: First, the predicted spin-parity distributions show greater sensitivity to the angle of the
outgoing α particle than to the excitation energy (for angle and energy variations that typically occur in
Surrogate experiments). Second, the predicted Jπ distributions vary rapidly with the angle of the outgoing
particle for smaller angles (outgoing particle moving in the forward direction). Since typical experimental
analyses group angles into bins, the rapid variations in the forward direction can be expected to lead to
a large scatter of the measured coincidence probabilities, unless the Weisskopf-Ewing limit is valid. This
prediction could be tested experimentally. If confirmed, this would imply that future Surrogate experiments
should be designed in a manner that minimizes the sensitivity to the angle of the outgoing particle.

The model outlined in this report provides a basis for developing a more comprehensive treatment of the
process of producing a compound nucleus via inelastic scattering. Scattering from spherical, transitional, and
deformed nuclei needs to be studied. Given the simplifying assumptions underlying the model, predictions
made in the present framework should be treated as a first estimate and compared against predictions
resulting from models of increasing sophistication, as well as experimental findings. In particular:

• The effects of collectivity on the predicted Jπ distributions need to be studied: It is likely that a
simple single-particle picture is adequate to describe the spectroscopy of the nuclear configurations
reached immediately following a direct reaction of the stripping or pickup reaction type (e.g. (3He,α))
at high excitation energies relevant to Surrogate reactions. However, exciting the nucleus by inelastic
scattering (e.g. (p,p′) or (α,α′)) may require a more complete picture since this type of reaction is
highly sensitive to nuclear collectivity. These effects are not included in the uncorrelated particle-hole
model employed here. The model can be extended by employing transition potentials in conjunction
with a DWBA treatment of the scattering reaction. The transition potentials need to be constructed by
convoluting an effective interaction between the projectile and target nucleus with transition densities
that contain the relevant correlations.

• The proper description for final states in the continuum needs to be identified: In the context of Sur-
rogate reactions, unbound final states need to be considered (in both inelastic scattering and stripping
reactions). The model described here employed a weak-binding approximation for these states. One
alternative description, based on the discretized-continuum approach, resulted in large uncertainties in
the calculated cross sections (see Sections 3.3 and 3.4). More work is required to adequately address
this issue.

• The effects of varying the projectile-target optical potential need to be investigated. An α-nucleus
potential obtained via a double-folding procedure should be considered and compared to the phe-
nomenological potential used in the study described here.

• Strictly speaking, the model predicts the Jπ population immediately following the one-step scattering
process. The damping that arises from the coupling of the resulting 1p-1h states to more complicated
2p-2h excitations drives the eventual formation of the compound nucleus. Its effect was taken into
account schematically by introducing an energy-dependent width for each 1p-1h state and incorpo-
rating that width in the summation procedure that yielded the inelastic scattering cross section for
excitation to a given final energy and thus the predicted compound nucleus spin-parity distribution.
The sensitivity of the calculated cross sections and Jπ distributions to the prescription for determining
the widths of the excited states needs to be assessed.

• A more comprehensive treatment of the formation of a compound nucleus via inelastic scattering (or
a transfer reaction) would include a detailed, microscopic description of the damping process, as well
as width fluctuation effects. Such treatment is beyond the scope of current work.

• Finally, since determining cross sections for n-induced reactions on actinide nuclei is an important goal
of the Surrogate research program, the model has to be extended to include the effects of deformation.
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